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Abstract

A rigid insulated die slides at a constant sub-critical speed on a transversely isotropic half-space in the presence
of friction. In a two-dimensional analysis of the dynamic steady-state, the coupled equations of thermoelasticity are
invoked. All elements of the Coulomb friction model are strictly enforced, thus giving rise to auxiliary conditions,
including two unilateral constraints.

Robust asymptotic forms of an exact solution to a related problem with unmixed boundary conditions lead to
analytical solutions for the sliding indentation problem. The solution expressions, abetted by calculations for zinc, show
the role of frictional heating on the half-space surface. The effects of friction and sliding speed on contact zone size and
location and average contact zone temperature are also studied.

The analysis is aided by factoring procedures that simplify the complicated forms that arise in anisotropic elasticity.
A scheme that renders expressions for roots of certain irrational functions analytic to within a single quadrature also
plays a role.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Rapid sliding on elastic half-spaces by rigid dies provides a first step-model in studies of mechanisms and
surface-finishing processes. Dynamic isothermal analyses of frictionless (Craggs and Roberts, 1967,
Georgiadis and Barber, 1993) and friction-resisted (Brock, 1981) sliding exist, and Brock and Georgiadis
(2000) have treated friction-resisted sliding as a coupled thermoelastic process in the dynamic steady-state.
The half-spaces in these studies are isotropic. Brock et al. (2001) have considered the pure indentation of
transversely isotropic or orthotropic half-spaces, and the sliding indentation case has been treated by Brock
(2002). These two studies are isothermal and frictionless.
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In this article, therefore, a two-dimensional steady-state dynamic analysis of sliding indentation on a
transversely isotropic half-space governed by the equations of coupled thermoelasticity is performed. The
die is insulated, is of infinite extent and constant cross-section in the direction perpendicular to sliding, and
exhibits a smooth profile governed by Coulomb friction. The compressive force on the die and the sliding
speed are treated as given. The latter is constant and sub-critical.

Physically acceptable solutions for sliding indentation allow the contact zone size and location to be
determined for the given force and speed. Thus, the associated boundary value problem statement is
augmented by auxiliary conditions. Of particular importance are the Signorini conditions (Georgiadis and
Barber, 1993): (a) contact zone normal stress is non-tensile, and (b) indentor and half-space surfaces do not
interpenetrate.

As is standard practice (Muskhelishvili, 1975) the Coulomb proportionality between normal and tan-
gential resultant contact forces is guaranteed by enforcing the same proportionality between shear and
(compressive) normal stress at every contact point. This gives a well-posed problem, but local enforcement
of the Coulomb model also implies, in the strict sense, that the shear stress opposes at every contact point
the relative motion (slip) of indentor and half-space. Therefore, this article imposes another unilateral
constraint in addition to Signorini condition (a), that the contact zone shear stress everywhere exhibits a
negative work-rate (Brock, 1981). To focus on physically relevant situations, the possibility of singular
behavior, e.g. Brock (1981), is minimized by considering only continuous finite indentor profiles and profile
slopes.

The general equations for transversely isotropic coupled thermoelasticity are presented in the next sec-
tion, followed by statement of the sliding indentation problem in the dynamic steady-state. A simpler re-
lated problem is solved exactly in transform space, and robust asymptotics used for the transform
inversions to reduce the sliding indentation study to a classical singular integral equation problem. Sub-
stantial use is made of Cauchy theory for integration—in particular, procedures used by Brock (1999) and
Brock and Georgiadis (2000), hereafter denoted as BGB. Factoring procedures used by Brock et al. (2001)
and Brock (2002), hereafter denoted as BGH, are also followed. These simplify the generally complicated
forms that arise in anisotropic elasticity, e.g. Payton (1983) and Norris and Achenbach (1984). The solution
process also requires, finally, the extraction of certain roots of irrational functions. In these instances, the
approaches of Norris and Achenbach (1984) and Brock (1998), designated hereafter as NAB, are used.

2. General equations

Consider a homogeneous linearly thermoelastic half-space. It is defined in terms of the Cartesian co-
ordinates (x1,x;,x3) as the region x, > 0 and is at rest at a uniform (absolute) temperature 7;. These co-
ordinates also define the principal material axes of the half-space; the field equations for x, > 0 in the
absence of body forces are then

Gl . %0 0oy :
= pit:. K——Th—%6, — pc.0 = 1
an puu l@x? 0 69 €i pcbe 0 ( a)
Ou;, Ou
o = Cujieji — 100, 2en = aTCI; + &Z (1b)

Here u; is the displacement in the x;-direction, and 6 is the change in the temperature from the rest value 7j.
All indices range over (1, 2, 3), J; is the Kronecker delta, the summation convention holds, and (-) signifies
time differentiation. The constants (p, ¢,,K;) are the mass density, specific heat at constant strain, and
thermal conductivity. The array cy; gives the isothermal elasticities. Symmetries allow contraction to the
21-member array ¢, = cuu(m,n =1,2,...,6) under the scheme in which subscript pairs (ik) and (j/) are
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replaced as follows: (11)—1, (22)—2, (33)—3, (12)=(21)—4, (23)=(32)— 5, (31)=(13) — 6. In this
format the term

Xi = CikOg (l,k = 1, 2, 3) (2)
where oy, are coefficients of thermal expansion. For the transversely isotropic case here, the x,-axis is one of
material symmetry, and

K3 = Kl, o3 = 01 (3&)

€33 =C11, Cs5=Ca, 2Ce6=Cil —C13, €23 =Cl2 (3b)

ke =0(010=1,2,3;k=4,56), cys=csc=0 (3¢)
subject to the restrictions

(KI,KQ) > 0, (061, dz) >0, ¢, >0 (421)

cn > es|,  (en +eis)en > 2c%2, ca >0 (4b)

The inequalities (4a) are based on thermodynamic considerations (Boley and Wiener, 1985) while (4b)
guarantees that the array cy;, gives a positive-definite fourth-order tensor (Payton, 1983).

3. Sliding indentation problem

A plane-strain state is induced in this half-space by an insulated rigid die of uniform cross-section and
infinite extent in the x;-direction. It is simultaneously translated in the positive x;-direction with constant
sub-critical speed v and pressed into the half-space surface with force (per unit length in the x;-direction) F.
This process is resisted by Coulomb friction, and eventually attains a dynamic steady-state. It is, therefore,
convenient to translate coordinates in the sliding direction with the same speed. Then, as depicted sche-
matically in Fig. 1, (x, = 0,x; = L) always locate the contact zone edges, where L =L, —L_> 0 is the
zone size. The lengths (L,L.) are a priori unknown. The plane-strain nature of the process implies that
(u1,us,0) and the stresses (o1, 022, 012, 33) are the non-trivial dependent variables. The steady-state nature
implies that these depend only on (x,x,), and that time derivatives in the moving coordinates can be

neglected, i.e. () = —vd( )/0x;. It is also convenient to introduce the parameters
0o [ca K+ K T, 002 _
v, = > h= e | & = c—v(vrod"k) (k=1,2) (5a)
v
———

2

_L_——.-q—— L —>

Y
L+
X

Fig. 1. Schematic of rapid sliding indentation.
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&Flz(ﬁ+m3—l)a1+(m—1)oc2, &F2:2(m—1)oc1+ococ2 (Sb)
1
3
where (1%, &) are the shear wave speed in an isotropic solid with shear modulus ¢4y and average thermal
expansion and, after Payton (1983), the dimensionless quantities

a= (20(1 + O(z) (SC)

c c c c
a="2 =" m=14+2L m=1+2L y=1+af—m? (6)
C44 Ca4 C44 Ca4

In view of (6) 4 is a thermoelastic characteristic length, (e, ¢;) are dimensionless thermoelastic coupling
constants, and the dimensionless quantities (I'y, I';) both characterize these constants and influence the
solution in their own right. The characteristic length suggests that the dimensionless variables (&, 7, ¢, k;) be
introduced:

2K;
= h h = 0 P = ! | = 1 2 7

(x17x2) ( éa 17)7 v CUr, Kl +K2 (l ) ) ( )
In view of (2) and (5)—(7) the general field equations (1) give the pertinent forms

(B — s ez + iy + mur gy — hal'10,:= 0 (8a)

muy gy + (1 — cz)u;g + Uy yy — h&FZH,,, =0 (Sb)

1

h(klg,éi +k207,7,7 ) +c h9 —+ & (Flulﬁ —+ F2u27,7) &= 0 (80)
for n > 0, subject to the constitutive relations

h -

—0|] = ﬁul,i —+ (m — l)uz,n — hocF10 (98.)

Ca4

h _

— 0 = (m — l)ul,é + oy y — ]’lO(Fzg (9b)

Cu4

— 0] = um —+ uz,é (90)

Cyq
where (),,=0( )/0x. In light of (7) the boundary conditions for n = 0 become

dr(¢

(012,02) =0(EZL); 01 =puon, uy:= %(5 eL); 0,=0 (10)
Eq. (7) gives rise to dimensionless contact zone parameters (/., /) defined by

(L-HL_) = (hl+ahl_)7 L=hl (11)

The dimensionless quantity u is the sliding (kinetic) friction coefficient, and the last condition in (10)—
which holds for all = O—represents die insulation. Experimental data, e.g. (Blau, 1996), suggests that
0 < p < 1 for most material combinations, especially metal/metal. Although the present analysis can treat
values in excess of unity, the limitation 0 < p < 1 is observed in calculations. It is noted that the symbol L is
also used to represent the contact zone itself. The function V(&) is the normal displacement imposed by the
die profile in the contact zone, and (V,dV /d¢) must be finite and continuous. The condition involving
dV/dé, in (10) is sufficient to obtain a steady-state solution to within a rigid body translation. The re-
strictions on ¥ imply that (u,u,, #) should be finite and continuous almost everywhere.



L.M. Brock | International Journal of Solids and Structures 40 (2003) 3195-3210 3199

For the solution to this mixed boundary value problem to be physically acceptable, first of all, the total
(compressive) force (per unit length in the x3;-direction) on the contact zone must be the given F:

]’l/LO'ZQdé =-F (12)

The symbol L also signifies that integration is over the range (/_, /. ). Then, Signorini conditions must be
satisfied: After Georgiadis and Barber (1993) and Brock and Georgiadis (2000), these consist of two parts.
Condition (a) requires that

0 <0 (17:0,5614) (13)

Condition (b) requires in effect that stresses are at least finite at the contact zone edges (¢ = /..). Finally, a
local negative shear work rate requires, in its steady-state form, that

opv(h+u:) <0 (n=0,£€l) (14)
In light of (10) and (13), this reduces to the local unilateral constraint
we=—h (n=0,¢{el) (15)

In view of (7), violation of this constraint requires a displacement gradient on the order of unity. It will be
seen that such a state can be approached theoretically as the sliding speed tends to a critical value.

4. Unmixed problem: transform solution

Consider now a related problem that satisfies (8) and (9) and the unmixed conditions
o =0(), on=upus(l), 0,=0 (16a)

a(&) =0 ((¢L) (16b)

on n = 0. Here ¢(¢) is a largely arbitrary function, continuous and finite for ¢ € L. This unmixed problem
gives a candidate for the solution to the sliding indentation problem if ¢(¢) is interpreted as the contact
zone normal stress and satisfies the condition on u, ¢ in (10). The candidate becomes the solution itself if the
unilateral constraint (13) and (15), and Signorini condition (b) are also satisfied.

To solve the system (8), (9) and (16) the bilateral Laplace transform (van der Pol and Bremmer, 1950)
and its inverse, respectively, are introduced as

= /f Jeride, £ /f “dp (17)

In the first integral p is imaginary, while the second integration is along the Bromwich contour in the
complex p-plane. Application of the transform operation to (8) and (9) gives for n > 0 the pertinent
transform sets

i =23 QU iy = =8 g0 Fie ™, b= O (18)
p
Lo =Y Qllm — Ui+ o Vi — FaJe (192)
44
i&lz = —&pz Q,(ljl + I/,*)eipqm (lgb)

C44



3200 L.M. Brock | International Journal of Solids and Structures 40 (2003) 3195-3210

0, =—p* Y g0 (19¢)

where Y implies summation over the range i = (1,2, 3). In (18) and (19) the Q; are unknown functions of
(p,q:), and the dimensionless quantities

2(q)U; = BTy + (oI} — sz)qf, 2(q)Vi = ad’Ty + (ql2 —m)I (20a)
g(q) = (4’ + ¢*) (B’ + og®) — m*q’ (20b)
Vod =+/p—c2, B=VI1-c (20c)

Here (¢7,43,43) are the roots of the cubic
<k1 + k2q2 +}—i>g(q) —|—§ [81(32 + aqz) + gzqz(aAZ + qZ) _ 2m\/8182q2] (21)

These roots need not be single-valued in p but, in order that (18) and (19) be bounded as  — oo, must give
Re(pg;) = 0 in the cut p-plane. The Q; follow by substituting (19) into the transform of (16a):

h g(qi N .
=z (A ) (g7 — qc) [fo (4 916 + q;9:(q; + 44) G(4; qi)a] (22a)
0lCa4
3
A= (Neg + MiB) gy (4} — 47) (). 7) (22b)
i=1
6= / a(t)e ™ dr (22¢)
L

In (22a,b) i # j # k and the three indices cycle through the values (1,2,3), e.g. (i=1,j =2,k =3). The
dimensionless terms (G, H) are given by

G(,y") = Kr(&@ +)°) + Lrx’y* + KrT — LrA’B (23a)

H(x,y) = MpA*B* + [Np(x*y* — A*B?) + M(T + x> 4+ y?)|xy + MyB* (x> 4 y%)*

+ (MpB*T + Npx®y?) (3 + %) + (Nr T — MB*)x*y? (23b)
and the dimensionless parameters
1
T =od* + p (B —m?) (24a)
Kp:(Bz—m)F1+ocA2F2, Lr:OCF1+(1—m)F2 (24b)
My = (m— Iy —ad’T,, Np=—ol| + (m— BT, (24c)

depend only on dimensionless thermoelastic constants and the dimensionless sliding speed ¢. With (18), (19)
and (22) available, the solution to the unmixed problem in transform space is essentially complete.
However, the roots ¢> exhibit a type of p-dependence that leads, upon transform inversion, to multiple
integrals of ¢. While not complicated, their presence could require that the boundary condition on u, ¢ in
(10) be solved for ¢ by semi-numerical techniques. Asymptotic forms of (18), (19) and (22) are, therefore,
sought that allow an analytical solution.



L.M. Brock | International Journal of Solids and Structures 40 (2003) 3195-3210 3201

5. Unmixed problem: asymptotic solution

Asymptotic forms of the bilateral Laplace transform valid for |p| < | give inversions that are valid for
|€] > 1. However, because # is usually (Brock and Georgiadis, 2000) of an order of magnitude less than 1
pum, the inversions are robust. Therefore (18) and (19) are expanded in view of (20), (22a,b) and (23) for
small |p|, and only the lowest-order terms kept. In particular, the roots of (21) give

qo=ad, @ =bd, Jpgy= o, 6=YL (25)
/4
where the dimensionless quantities (a, b, ¢;) are defined by (5) and
c o
=Q b=Q- i = 26
a + w, w, ¢ k% (26a)
2/7(Q,0) = \/ (A, £ B —m?, oA, =\/p. — 2, ab=A,B (26b)
o, =o+e&, P.=f+e, m=m+ae, y.=14+af, — mf (26¢)
The transforms (18) become, for example,
Ca4 . Uae‘“"\/‘_p\/l_’ R A U;,e"’”\/‘_f’\/f_’ R A
— i = ————(Kpb6 + N,ous) - ———— (K, N,0 27
0= B —a)RD KebO + NoOKS) — s (Kaad + Nadpo) (27a)

Ca4 . aVae’“”\/’_”ﬁ’
Cag Ve VTV
h > B(b—a)R,D

bVyeb1V/PVP

(Nb,ua — Kbba()') — Bi(b — a)RéD

(N ué — K,adé) (27b)

~ 0@,ae IV TIVP 0@,be P1VPVE

G0 =~ (K,b& + N,0ué) — K,a6 + N,dué 27
Caq B(bfa)R}D ( »0G + Np ,LLO') B(bfa)R*D ( ac + Mo-) ( C)
Here (19) and (20) produce in light of (25) the dimensionless terms
(Ua, Up) = BTy + (mI'2 — al'y)(a?,b7) (28a)
Vo, Vi) = 0d* Iy — mI'y — T'1(a*, b%) (28b)
(Ky,Ky) = Kr — Lp(a,b*),  (N,,Ny) = Np(a?,b*) — M B? (28¢)
0,=d" - T + A’°B*, O©,=0b"— T + 4*B* (28d)
and dimensionless parameters
1
R,=cA,+ CpB, T,= oc,;Ag +—(B* - mg) (29a)
o
DCg = My(Kr — LrT,) + LrNrA2, ¢*D = KrNy — LrMB? (29b)

6. Sliding speed and material effects

If Re(a,b) = 0, then boundedness of (27) as § — oo is assured if the branch cuts Im(p) = 0, Re(p) < 0
and Im(p) = 0, Re(p) > 0 are introduced for /%p respectively, and Re(y/£p) = 0 in the cut p-plane. Study
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of (20c) and (26a,b) shows that ¢ = £(1, /B, \/E;) are branch points of (B,b),4 and (4., a), respectively, in
the c-plane. We impose, therefore, the requirements that Re(B, b, 4, 4,,a) = 0 in the cut ¢-plane. In light of
(5a) and (7), the general property > 1 (Payton, 1983) implies that (/Bv?,1?) are, respectively, the iso-
thermal dilatational and rotational wave speeds parallel to the x;-axis, while (1/f,1°, ") are (asymptoti-
cally) their thermoelastic counterparts. Therefore, limiting the present study to sub-critical sliding speeds
requires as a first step that 0 < ¢ < 1, i.e. (B,4,4,) in (27) are always positive real.

The terms (a, b) exhibit branch points in addition to the values ¢ = (1, +/B,) shared with (B, 4,). By
generalizing the isothermal transversely isotropic results of Payton (1983), three categories for the di-
mensionless thermoelastic parameters (., f5,,7,) can be defined according to the locations of these addi-

tional branch points:
Category 1:2y/a.f. <y, <1+of, (1 <p, <o)
%+ B, <y <1 +of, (1<o <p,) (30a)
20, <y, <1402 (1<B,=u)

Category 2: 1+ B, <7y, <o+ B, 7> —4ap, <0 (30b)

Category 3:7, < 1+ B,, 72 —4ap, <0 (30c)

The associated cuts are chosen so that the property Re(a,b) > 0 is maintained in the cut c-plane. In this
article, however, it is useful to seek the branch points of the combinations » + a. For category 3, the terms
b £ a exhibit, respectively, the branch points

o o1 w/m? — (o, — “D-—m 2 a
==+, c—\/l (%_l)z[ﬁ\/g (o — (B, — 1) ] (31a)

¢=+id", = \/ﬁ {\/cx_\/mz (1), — 1) +ms}2 1 (31b)

For category 1 and 2, the term b — a has, respectively, the branch points

2

1 . -
¢ = +e,, cc:\/m{mgil\/ac_g\/(ocg—l)([)’g—l)—ms} 1 (32a)

¢ = +ic” (32b)

Egs. (31) and (32) show that the categories coalesce to some extent in so far as the branch points of the
linear combinations of (a, b) are concerned. It should also be noted that, after BGH, the denominator term
b — a has been factored from the original solution forms. The potential singular behavior does not, as seen
in (31) and (32), arise for real sliding speeds. In fact, such behavior would not occur in any case: the ex-
ponential terms in (27) are identical when b = a, and combinations of the now-common numerator terms
themselves exhibit factors b — a that cancel that in the denominator.

However, 0 < ¢’ < 1 in (31a). Thus, the quantities (a, b,a + b) are given by (26a) and are positive real on
the positive Re(c)-axis for 0 < ¢ < 1 for all subsonic sliding speeds (0 < v < t°) in the category 1 and 2
case, but only for ¢ < ¢ < 1 when subsonic speeds lie in the range ¢'v? < v < t? in the category 3 case. For
speeds in the subsonic range 0 < v < ¢'t? the combination b + a remains positive real for category 3 in the
interval 0 < ¢ < ¢’ of the positive Re(c)-axis, but (a,b) are now the complex conjugates

a=QFin, b=Q=+iw (33)
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for Im(c) = 0+,0 < ¢ < ¢/, where
2/ = \/m? — (a4, — B)’ (34)

Eq. (27) is bounded in # for all subsonic speeds because Q > (w, @) > 0. Moreover, the real-valued nature
of c-dependence in (27) is maintained even when 0 < ¢ < ¢’ because the pairs of terms in (27) become
complex conjugates in view of (33).

Another denominator term in (27), R,, is also obtained by factoring the original forms after BGH. It is a
more compact version of the thermoelastic Rayleigh function of the speed parameter ¢, where

R(0) <0, R(£1)>0, R(c})=0 (0<cs<1) (35)

That is, c1Y is the effective thermoelastic Rayleigh speed parallel to the x;-axis. By following NAB, the
dimensionless Rayleigh speed parameter can be obtained analytically to within a single quadrature as

1 — JaR 1 [V Cova [2—1
Cp = ﬂ7 InGp =—— / tan™' ﬂ t 2g (36)
Gr \| /B.(1 4+ /%) T Jy t B.—t*t

In (36) the definitions

-1 L() mf
Ry = KoT> + Lol — KoLy {(Ko —Loﬁc)(Ko - O(g) + KoLy %} <0 (37a)
KO:(I—m)F1+ﬁF2, L():OCF1+(1—W[)F2 (37b)

hold. Because (27) is singular at ¢ = %c%, we define sub-critical sliding indentation speed as being that for
which

0<ec<cy (38)

7. Unmixed problem: full-field solution example

For (27) governed by either (26a) or (33), the entire Im(p)-axis serves as the Bromwich contour in (17).
Integration along this axis is accomplished with standard tables (Peirce and Foster, 1956). Eq. (27a) then
gives

Ca4 -1 Qn Qn
= (CLB+4, d
n ¢ =2, (BT )/La<f1+92n2+12+92n2
Q T, T_
—(C.B — 4, — dt
* Zﬂ@Rc( ‘ ) /L G(Ii + @ 2+ 92772>
B T, Q Q
+- 2 (-2 / - 1 a
2R, 2 ) )L 2 + P2 24 Q42

BQ _
_H /0 T (39)
R, Jp \ T+ Q0 4 Q?

for category 3 when 0 < ¢ < ¢/, where o(¢) is understood and

p=t1t+an t=¢(—t (40a)
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DC, = I'(T.Lr — Kr) + LrA; (o', — mI) (40b)
DCy = I'((T,Ny — MyB*) 4+ Ny A (mI'y — al'y) (40c)

For category 1 and 2 for all 0 < ¢ < 1 and category 3 when ¢’ < ¢ < 1, however,

C44 -1 b17 an Q
—u; =——(C,B+ 4, dr CB—4,
p 2nRS( Bt )/L a(rz + b*n? + 2+ a2172) + anRﬁ( ¢ )

by an uB T, / T T
— dt Cy——= — dt
x /L 0(12 + b0 P+ a2n2> + 2nwR, NT L ¢ 24+ b2nr 12+ a*n?

uBQ T T
— dr 41
7R, /La<rz+b2n2+rz+a2n2) (41)

Similar results hold for (u,¢,0). Egs. (39) and (41) coincide in the limit as ¢ — ¢’ and as n — 0.

8. Sliding indentation problem solution

The simpler problem results provide a candidate for the sliding indentation problem solution if the
condition on uy in (10) is satisfied. Substitution of the counterpart to (39) and (41) into this condition and
invoking the standard (Carrier and Pearson, 1988) result

m —7no(y) (x—0+) (42)
where ¢ is the Dirac function, leads to the equation
1 odt C44R8 dv
2QA4,— (P A, + CyB = —_— L 43
) [ ok Cupur =S e )
for o. Here (P) signifies Cauchy principal value integration, and the dimensionless quantity Cy, is given by
DCy = I'y(NrA? — My) + Mp(0A’Ty — mI'y) (44)

Eq. (43) is a standard (Muskhelishvili, 1975; Erdogan, 1976) singular integral equation; in the manner of
BGB it yields the solution

o R, dv B\’
2 g = Do =1/4Q% +12( 1 — 45
” hAgDQJ(dé’i)’ 0 \/ +u( +CMAS> (45)
where the functional
_ v . t t—l_ v
I(X;x) = X(x)cosmv + <i+_ lx) sn:w (P)/L j(—())c<l+—t> dt (xel) (46a)
1 Y B 1 1

Eq. (46b) gives the eigenvalue of (43). Its sign indicates in light of (16a) that the solution candidate (45)
automatically satisfies Signorini condition (b) at £ =1/_.
Satisfaction at & = /., however, requires that

dv [t—1_\" dt
b I R 47
/Ldt<l+—t)t—l+ (47)
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Substitution of (45) into (12) in view of (16a) and use of Cauchy theory (BGB) gives

dv (t—1_\" A.Dq
—(—= ) dr=-"22F 4
/L dt (l+ —l) d C44R5 ( 8)

Egs. (47) and (48) provide the auxiliary formulas necessary to determine (7,7, ). To illustrate this and also
the determination of whether or not unilateral constraint (13) and (15) can be satisfied, we consider the
generic parabolic die

V="V +he+ine (49)

Here (¥, V1, V5) are real constants with dimensions of length. Substitution into (47) and (48) and use of
Cauchy theory (BGB) gives the formulas

404, F
"+ (1 N=07r+—""_ — = 50
s 2(++U) ’ +TEU(1+U>R C44V2 ( )
for (I,1,,1_ =1, —1). Use of (50) and Cauchy theory (BGB) in (45) then yields
2sm mw F v .
= —M(E-1)7 <0 (Eel) (51)

_nv(lJrv)W( -

It is noted that (51) is not only bounded, but vanishes continuously at £ = /..

It is also seen, in view of (35) and (46b), that (50) implies 75 < 0 for 0 < ¢ < ¢} but, if super-Rayleigh/
subsonic sliding speeds (¢}, < ¢ < 1) are allowed, then (50) implies /> > 0. Both cases satisfy in light of (51)
the unilateral constraint (13). To examine this situation, (45) and (49) are used to obtain for the half-space
surface outside the contact zone (7 = 0, & & L) the formulas

e = —Wl+ 1, —&— (1, — &)™ (- &)™ (52a)

Upze = — [<5+_§>U(l+v+ul g)—l] (52b)

Eq. (52a) exhibits continuity at the contact zone edges (¢ = /.), while (52b) shows that the half-space
curvature behaves at both edges as +oco for V5 < 0 and V5 > 0, respectively. Schematics for the two cases of
possible surface deformation, that also satisfy (13), are given in Fig. 2. The case /5 > 0 is seen to be ar-
tificial, so that the restriction (38) does more than avoid singular behavior. This result is known for the
frictionless isotropic isothermal problem as well (Georgiadis and Barber, 1993).

The remaining unilateral constraint (15) gives (BGB) in view of (39), (41), (43), (45) and (49) the in-
equality

“WS<h (53a)

v, <0 V,>0
v

S At

Fig. 2. Schematics of surface deformation for parabolic die.
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1 B

B B
S=— 1+CLZ—,u2—<1+CM—

A,

:Dg i )}(h—f)uv(i— lf)*”+,uA£S(l+—f—pl) (53b)

The dimensionless quantity S > 0 for some values of & € L, so that the local constraint (53a) is not au-
tomatically satisfied. Following Brock and Georgiadis (2000), a global constraint is sought: First, the roots
of dS/d¢ are examined in order to find maximum positive values of S. Use of the argument principle
(Hille, 1959) shows that only one such root, & = &, exists for & € L. The same approach (NAB) used for
(36) gives

_ l+ + l_X()

& = T+ x (& el) (54a)
-1 1 1 [ ¢dt
2uQL

¢ = tan™! ar? (54c)

[uzg (1 + cMA%) - CLA%} [+ vl — )] — 2 2 (1 + CMA%)
Substitution of (54) into (53a,b) in light of (50) leads to the global constraint

4uQB F 1
- — <1 55
717(1 + U)RE C‘44h 60 —[_—vl ( )
The upper bound imposed on the compressive load F' is more severe as the sliding speed nears its allowable
maximum (¢ — ¢%).

9. Surface thermal effects

The counterparts to (39) and (41) for the temperature change 6 reduce for the contact zone (n = 0,¢ € L)
to

_ o 0QCzB odt
=_—(C,A B)o —2 P
cudl) = 2-(Cod + CuB)o — 225 >/Lt—£ (56)
Here the dimensionless quantities
DC, =K (T —T,) + LrB*(42 — 4%) (57a)
DCy = K (4% — A2) + Lp(TA? — T,4*) (57b)
DCp = M (T, — T) + Np(4* — A7) (57¢)

vanish appropriately in view of (20), (24), (26) and (29) for the isothermal limit.
Substitution of (45) and (49) into (56) and use of Cauchy theory (BGB) gives
al, B £

hal = ——= ca+c,,—+uzcg(1 +CMA

Do 4 )] (I, =)™ (E—1)" + W%MC35(1+ — & 40l) (58)

For (n =0,¢ ¢ L) the lead term in (56) vanishes, and integration is no longer singular:

hil) — WMCB;[A el = (I, — O — &) (59)
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is the result (BGB). Egs. (58) and (59) show that the surface temperature change is continuous at the
contact zone edges, i.e. they both give

ol B _ 1
0(l,) = #ﬁCBZU! >0,0(1_) = (1 +;)0(l+) <0 (60)

Eq. (60) shows that the temperature change on the half-space surface vanishes (asymptotically) outside the
contact zone in the absence of friction (i = 0). Because (/3,v) < 0, it also shows that frictional heating
occurs at the contact zone leading edge (¢ =1,); the temperature actually drops at the trailing edge

(E=1).

10. Sample calculations: zinc

Zinc is a category 3 hexagonal material in its isothermal state, i.e. satisfies (30c) when (g1, &) = 0 (Payton,
1983). A thermoelastic study of zinc (Sharma and Sharma, 2002) yields the data

e = 162.8 GPa, ¢y =627 GPa, ¢, =50.8 GPa, ¢35 =36.2 GPa, c4 = 38.5 GPa
p = 7140 kg/m’

Ty =296°K, ¢, =390J/kg°C

K =K, =124 W/m°C, o, = 5.818(10°)1/°C, «, =15.35(10%)1/°C

These values satisfy (4a,b) and, in view of (5), (6) and (26c), give the key dimensionless parameters
o=1.6285 [ =4.2301, m=2.3195 m3=1.9403, y=2.506

o, = 1.7203, B, =4.3042, m,=2.4019, 1y, =2.6354

I''=4.6018, I,=15.1181
and (effective) thermoelastic characteristic length
h=0.019178 pm

It is seen that the thermoelastic terms (o, f5,,m.,7,) are, in keeping with the theory of linear coupled
thermoelasticity (Boley and Wiener, 1985), perturbations of their isothermal counterparts (e, 5, m, 7). The
thermoelastic terms do satisfy Eq. (30c), and their use in (31a) and (36) gives the dimensionless speed
parameters

¢ =0.9999, ¢} =0.8833

Because ¢, < ¢’ the restriction to sub-critical sliding means that the case for 0 < ¢ < ¢’ applies, e.g. (33) and
(39) hold.

Some effects of friction on thermoelastic sliding indentation can be seen in the contact zone size L = Al.
As an example, consider the simple parabolic profile arising from (49) when 7; = 0. Then (50) produces the
formula

*

L A4.Q
2 :

=2 — h 61
L (14 v)R,;’ (61)
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Fig. 3. Dimensionless contact zone size vs. dimensionless sliding speed.

Plots for zinc of the dimensionless ratio L/L* vs. sub-critical (0 < ¢ < ¢} = 0.8833) ¢ are given in Fig. 3 at
various values of the friction coefficient u. These show that contact zone size increases with both friction
and sliding speed. The variation with speed is more pronounced.

Another quantity of interest is the contact zone average temperature change

-
9:7/L0dé (62)

Substitution of (58) into (62) and use of Cauchy theory (BGB) gives for the same (7] = 0) parabolic die the
formula

0 oL CsBQ(1 +20) B
§_—L—RE[CQA3+CbB—2MW+M CB 1+CMZ (63a)
~ F

. _ 6
0 C44/’l5€ ( Sb)

0 02 04 06 08 1.0

c

Fig. 4. Dimensionless average contact zone temperature change vs. dimensionless sliding speed.
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Plots for zinc of the dimensionless ratio (63a) vs. sub-critical ¢ at various values of u in Fig. 4 show that the
average temperature change is always positive. The variation with both speed and friction is not as pro-
nounced, however, as that displayed in Fig. 3. The more-sensitive speed variation is, moreover, an inverse
one.

11. Comments

Robust asymptotic solutions have been obtained analytically for sliding indentation in the dynamic
steady-state on a transversely isotropic thermoelastic half-space by a rigid die in the presence of friction.
The analysis was two-dimensional, the die was insulated and its profile, smooth. Sliding could occur at any
constant sub-critical value, and all auxiliary conditions—including two unilateral constraints—that are
required for physically acceptable solutions were imposed.

The solution was examined for the case of a generic parabolic die, and equations for the contact zone size
and location derived. The solution also indicated that sub-critical sliding arises for sliding speeds below the
thermoelastic Rayleigh wave value. Singular behavior occurs at the Rayleigh speed, and speeds in the super-
Rayleigh/subsonic range lead to an artificial result in order that the first unilateral constraint—that contact
zone normal stress is non-tensile—be satisfied. This speed-related behavior is consistent with isotropic/iso-
thermal sliding indentation studies (Georgiadis and Barber, 1993; Brock and Georgiadis, 2000; Brock, 2002).

The second unilateral constraint arises under a strict interpretation of the local application of the
Coulomb model: the contact zone shear stress work-rate must be negative. It was found that the local
constraint is not automatically satisfied, but that a global constraint for the total compressive force on the
die can be extracted. Violation of this constraint implied that a displacement gradient magnitude ap-
proaches unity, which in turn would violate the linearity of the analysis. However, the global inequality
shows that this scenario arises generally for sliding speeds near the critical subsonic (Rayleigh) value. At
that speed, the solution becomes unbounded in any case.

It was found that the temperature change (asymptotically) vanishes on the half-space surface outside the
contact zone in the absence of friction. With friction, the temperature at the trailing edge of the zone might
actually drop. Calculations showed, however, that the average contact zone temperature always increases.
This average varies directly with friction and inversely with sliding speed. Both variations were small when
compared to the direct variations seen with both parameters in calculations for the contact zone size.

In general (Payton, 1983; Norris and Achenbach, 1984) solution forms for dynamic anisotropic elasticity
are more complicated than their isotropic counterparts. Following BGH, however, certain factoring pro-
cedures were used in this article to simplify these forms. As noted in the former article, similar factoriza-
tions could in fact be used to advantage in the isothermal case. This study also required the extraction of
certain roots of irrational functions, and the work of NAB provided an approach that produced expres-
sions analytical to within a single quadrature.

The solution forms obtained here were, in the full field, sensitive to categories of dimensionless iso-
thermal elastic constants. The categorization followed the three-element system used for isothermal
transverse isotropy by Payton (1983). It was found here that (a) the three categories coalesced into two in so
far as distinguishing solution form is concerned and (b) even these two categories lost their distinctiveness
on the half-space surface itself. It should be noted that the isothermal and thermoelastic categories might
not coincide for a given material. Although thermoelastic coupling may only perturb the isothermal ma-
terial constants, e.g. zinc, a material that exists near the edge of one category isothermally may move into
the adjacent category thermoelastically.

It should also be noted that the present analysis ignored the possibility of contact zone adhesion, i.e.
when tangential speeds of surface points equal the sliding speed. The present results are now being applied
to dynamic fracture studies that include this possibility, and to purely transient analyses of contact. It is
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hoped, however, that the present results stand on their own in shedding some light on the rapid sliding
indentation of anisotropic thermoelastic solids.
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