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Abstract

A rigid insulated die slides at a constant sub-critical speed on a transversely isotropic half-space in the presence

of friction. In a two-dimensional analysis of the dynamic steady-state, the coupled equations of thermoelasticity are

invoked. All elements of the Coulomb friction model are strictly enforced, thus giving rise to auxiliary conditions,

including two unilateral constraints.

Robust asymptotic forms of an exact solution to a related problem with unmixed boundary conditions lead to

analytical solutions for the sliding indentation problem. The solution expressions, abetted by calculations for zinc, show

the role of frictional heating on the half-space surface. The effects of friction and sliding speed on contact zone size and

location and average contact zone temperature are also studied.

The analysis is aided by factoring procedures that simplify the complicated forms that arise in anisotropic elasticity.

A scheme that renders expressions for roots of certain irrational functions analytic to within a single quadrature also

plays a role.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Rapid sliding on elastic half-spaces by rigid dies provides a first step-model in studies of mechanisms and

surface-finishing processes. Dynamic isothermal analyses of frictionless (Craggs and Roberts, 1967;

Georgiadis and Barber, 1993) and friction-resisted (Brock, 1981) sliding exist, and Brock and Georgiadis

(2000) have treated friction-resisted sliding as a coupled thermoelastic process in the dynamic steady-state.
The half-spaces in these studies are isotropic. Brock et al. (2001) have considered the pure indentation of

transversely isotropic or orthotropic half-spaces, and the sliding indentation case has been treated by Brock

(2002). These two studies are isothermal and frictionless.

International Journal of Solids and Structures 40 (2003) 3195–3210

www.elsevier.com/locate/ijsolstr

* Tel.: +1-859-257-2839; fax: +1-859-257-3304/8057.

E-mail address: brock@engr.uky.edu (L.M. Brock).

0020-7683/03/$ - see front matter � 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0020-7683(03)00122-7

mail to: brock@engr.uky.edu


In this article, therefore, a two-dimensional steady-state dynamic analysis of sliding indentation on a

transversely isotropic half-space governed by the equations of coupled thermoelasticity is performed. The

die is insulated, is of infinite extent and constant cross-section in the direction perpendicular to sliding, and

exhibits a smooth profile governed by Coulomb friction. The compressive force on the die and the sliding
speed are treated as given. The latter is constant and sub-critical.

Physically acceptable solutions for sliding indentation allow the contact zone size and location to be

determined for the given force and speed. Thus, the associated boundary value problem statement is

augmented by auxiliary conditions. Of particular importance are the Signorini conditions (Georgiadis and

Barber, 1993): (a) contact zone normal stress is non-tensile, and (b) indentor and half-space surfaces do not

interpenetrate.

As is standard practice (Muskhelishvili, 1975) the Coulomb proportionality between normal and tan-

gential resultant contact forces is guaranteed by enforcing the same proportionality between shear and
(compressive) normal stress at every contact point. This gives a well-posed problem, but local enforcement

of the Coulomb model also implies, in the strict sense, that the shear stress opposes at every contact point

the relative motion (slip) of indentor and half-space. Therefore, this article imposes another unilateral

constraint in addition to Signorini condition (a), that the contact zone shear stress everywhere exhibits a

negative work-rate (Brock, 1981). To focus on physically relevant situations, the possibility of singular

behavior, e.g. Brock (1981), is minimized by considering only continuous finite indentor profiles and profile

slopes.

The general equations for transversely isotropic coupled thermoelasticity are presented in the next sec-
tion, followed by statement of the sliding indentation problem in the dynamic steady-state. A simpler re-

lated problem is solved exactly in transform space, and robust asymptotics used for the transform

inversions to reduce the sliding indentation study to a classical singular integral equation problem. Sub-

stantial use is made of Cauchy theory for integration––in particular, procedures used by Brock (1999) and

Brock and Georgiadis (2000), hereafter denoted as BGB. Factoring procedures used by Brock et al. (2001)

and Brock (2002), hereafter denoted as BGH, are also followed. These simplify the generally complicated

forms that arise in anisotropic elasticity, e.g. Payton (1983) and Norris and Achenbach (1984). The solution

process also requires, finally, the extraction of certain roots of irrational functions. In these instances, the
approaches of Norris and Achenbach (1984) and Brock (1998), designated hereafter as NAB, are used.

2. General equations

Consider a homogeneous linearly thermoelastic half-space. It is defined in terms of the Cartesian co-

ordinates ðx1; x2; x3Þ as the region x2 > 0 and is at rest at a uniform (absolute) temperature T0. These co-

ordinates also define the principal material axes of the half-space; the field equations for x2 > 0 in the
absence of body forces are then

orik

oxk
¼ q€uui; Ki

o2h
ox2i

� T0

orik

oh
_eeik � qcv

_hh ¼ 0 ð1aÞ

rik ¼ cikjlejl � vihdik; 2ekl ¼
ouk

oxl
þ oul

oxk
ð1bÞ

Here ui is the displacement in the xi-direction, and h is the change in the temperature from the rest value T0.
All indices range over (1, 2, 3), dik is the Kronecker delta, the summation convention holds, and ð�Þ signifies
time differentiation. The constants ðq; cv;KiÞ are the mass density, specific heat at constant strain, and

thermal conductivity. The array cikjl gives the isothermal elasticities. Symmetries allow contraction to the
21-member array cmn ¼ cnmðm; n ¼ 1; 2; . . . ; 6Þ under the scheme in which subscript pairs ðikÞ and ðjlÞ are
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replaced as follows: (11)! 1, (22)! 2, (33)! 3, (12)¼ (21)! 4, (23)¼ (32)! 5, (31)¼ (13)! 6. In this

format the term

vi ¼ cikak ði; k ¼ 1; 2; 3Þ ð2Þ
where ak are coefficients of thermal expansion. For the transversely isotropic case here, the x2-axis is one of
material symmetry, and

K3 ¼ K1; a3 ¼ a1 ð3aÞ

c33 ¼ c11; c55 ¼ c44; 2c66 ¼ c11 � c13; c23 ¼ c12 ð3bÞ

cik ¼ 0 ði ¼ 1; 2; 3; k ¼ 4; 5; 6Þ; c45 ¼ c56 ¼ 0 ð3cÞ
subject to the restrictions

ðK1;K2Þ > 0; ða1; a2Þ > 0; cv > 0 ð4aÞ

c11 > jc13j; ðc11 þ c13Þc22 > 2c212; c44 > 0 ð4bÞ
The inequalities (4a) are based on thermodynamic considerations (Boley and Wiener, 1985) while (4b)

guarantees that the array cikjl gives a positive-definite fourth-order tensor (Payton, 1983).

3. Sliding indentation problem

A plane-strain state is induced in this half-space by an insulated rigid die of uniform cross-section and
infinite extent in the x3-direction. It is simultaneously translated in the positive x1-direction with constant

sub-critical speed v and pressed into the half-space surface with force (per unit length in the x3-direction) F .
This process is resisted by Coulomb friction, and eventually attains a dynamic steady-state. It is, therefore,

convenient to translate coordinates in the sliding direction with the same speed. Then, as depicted sche-

matically in Fig. 1, ðx2 ¼ 0; x1 ¼ L	Þ always locate the contact zone edges, where L ¼ Lþ � L > 0 is the

zone size. The lengths ðL; L	Þ are a priori unknown. The plane-strain nature of the process implies that

ðu1; u2; hÞ and the stresses ðr11; r22; r12; r33Þ are the non-trivial dependent variables. The steady-state nature
implies that these depend only on ðx1; x2Þ, and that time derivatives in the moving coordinates can be
neglected, i.e. ð�Þ ¼ �voð Þ=ox1. It is also convenient to introduce the parameters

v0r ¼
ffiffiffiffiffiffi
c44
q

r
; h ¼ K1 þ K2

2v0r cvq
; ek ¼

T0

cv
ðv0r ~aaCkÞ2 ðk ¼ 1; 2Þ ð5aÞ

Fig. 1. Schematic of rapid sliding indentation.
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~aaC1 ¼ ðb þ m3 � 1Þa1 þ ðm� 1Þa2; ~aaC2 ¼ 2ðm� 1Þa1 þ aa2 ð5bÞ

~aa ¼ 1

3
ð2a1 þ a2Þ ð5cÞ

where ðv0r ; ~aaÞ are the shear wave speed in an isotropic solid with shear modulus c44 and average thermal
expansion and, after Payton (1983), the dimensionless quantities

a ¼ c22
c44

; b ¼ c11
c44

; m ¼ 1þ c12
c44

; m3 ¼ 1þ c13
c44

; c ¼ 1þ ab � m2 ð6Þ

In view of (6) h is a thermoelastic characteristic length, ðe1; e2Þ are dimensionless thermoelastic coupling

constants, and the dimensionless quantities ðC1;C2Þ both characterize these constants and influence the

solution in their own right. The characteristic length suggests that the dimensionless variables ðn; g; c; kiÞ be
introduced:

ðx1; x2Þ ¼ ðhn; hgÞ; v ¼ cv0r ; ki ¼
2Ki

K1 þ K2

ði ¼ 1; 2Þ ð7Þ

In view of (2) and (5)–(7) the general field equations (1) give the pertinent forms

ðb � c2Þu1;nn þ u1;gg þ mu2;ng � h~aaC1h;n ¼ 0 ð8aÞ

mu1;ng þ ð1� c2Þu2;nn þ au2;gg � h~aaC2h;g ¼ 0 ð8bÞ

hðk1h;nn þ k2h;gg Þ þ c hh
�

þ 1

~aa
C1u1;n
�

þ C2u2;g
��
;n ¼ 0 ð8cÞ

for g > 0, subject to the constitutive relations

h
c44

r11 ¼ bu1;n þ ðm� 1Þu2;g � h~aaC1h ð9aÞ

h
c44

r22 ¼ ðm� 1Þu1;n þ au2;g � h~aaC2h ð9bÞ

h
c44

r12 ¼ u1;g þ u2;n ð9cÞ

where ð Þ;x ¼ oð Þ=ox. In light of (7) the boundary conditions for g ¼ 0 become

ðr12; r22Þ ¼ 0ðn 62 LÞ; r12 ¼ lr22; u2;n ¼
dV ðnÞ
dn

ðn 2 LÞ; h;g ¼ 0 ð10Þ

Eq. (7) gives rise to dimensionless contact zone parameters ðl	; lÞ defined by

ðLþ; L Þ ¼ ðhlþ; hl Þ; L ¼ hl ð11Þ
The dimensionless quantity l is the sliding (kinetic) friction coefficient, and the last condition in (10)––

which holds for all g ¼ 0––represents die insulation. Experimental data, e.g. (Blau, 1996), suggests that

0 < l < 1 for most material combinations, especially metal/metal. Although the present analysis can treat

values in excess of unity, the limitation 0 < l < 1 is observed in calculations. It is noted that the symbol L is

also used to represent the contact zone itself. The function V ðnÞ is the normal displacement imposed by the

die profile in the contact zone, and ðV ; dV =dnÞ must be finite and continuous. The condition involving
dV =dn, in (10) is sufficient to obtain a steady-state solution to within a rigid body translation. The re-

strictions on V imply that ðu1; u2; hÞ should be finite and continuous almost everywhere.
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For the solution to this mixed boundary value problem to be physically acceptable, first of all, the total

(compressive) force (per unit length in the x3-direction) on the contact zone must be the given F :

h
Z

L
r22 dn ¼ �F ð12Þ

The symbol L also signifies that integration is over the range ðl ; lþÞ. Then, Signorini conditions must be

satisfied: After Georgiadis and Barber (1993) and Brock and Georgiadis (2000), these consist of two parts.

Condition (a) requires that

r22 6 0 ðg ¼ 0; n 2 LÞ ð13Þ
Condition (b) requires in effect that stresses are at least finite at the contact zone edges ðn ¼ l	Þ. Finally, a
local negative shear work rate requires, in its steady-state form, that

r12vðhþ u1;nÞ < 0 ðg ¼ 0; n 2 LÞ ð14Þ
In light of (10) and (13), this reduces to the local unilateral constraint

u1;n P � h ðg ¼ 0; n 2 LÞ ð15Þ
In view of (7), violation of this constraint requires a displacement gradient on the order of unity. It will be

seen that such a state can be approached theoretically as the sliding speed tends to a critical value.

4. Unmixed problem: transform solution

Consider now a related problem that satisfies (8) and (9) and the unmixed conditions

r22 ¼ rðnÞ; r12 ¼ lrðnÞ; h;g ¼ 0 ð16aÞ

rðnÞ ¼ 0 ðn 62 LÞ ð16bÞ
on g ¼ 0. Here rðnÞ is a largely arbitrary function, continuous and finite for n 2 L. This unmixed problem

gives a candidate for the solution to the sliding indentation problem if rðnÞ is interpreted as the contact

zone normal stress and satisfies the condition on u2;n in (10). The candidate becomes the solution itself if the

unilateral constraint (13) and (15), and Signorini condition (b) are also satisfied.

To solve the system (8), (9) and (16) the bilateral Laplace transform (van der Pol and Bremmer, 1950)

and its inverse, respectively, are introduced as

f̂f ¼
Z 1

�1
f ðnÞe�pn dn; f ðnÞ ¼ 1

2pi

Z
f̂f epn dp ð17Þ

In the first integral p is imaginary, while the second integration is along the Bromwich contour in the

complex p-plane. Application of the transform operation to (8) and (9) gives for g > 0 the pertinent

transform sets

ûu1 ¼
~aa
p

X
QiUie

�pqig; ûu2 ¼ �~aa
X

qiQiVie
�pqig; hĥh ¼

X
Qie

�pqig ð18Þ

h
c44

r̂r22 ¼ ~aa
X

Qi½ðm� 1ÞUi þ aq2i Vi � C2�e�pqig ð19aÞ

h
c44

r̂r12 ¼ �~aap
X

QiðUi þ ViÞe�pqig ð19bÞ
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hĥh;g ¼ �p2
X

qiQie
�pqig ð19cÞ

where
P

implies summation over the range i ¼ ð1; 2; 3Þ. In (18) and (19) the Qi are unknown functions of
ðp; qiÞ, and the dimensionless quantities

gðqiÞUi ¼ B2C1 þ ðaC1 � mC2Þq2i ; gðqiÞVi ¼ aA2C2 þ ðq2i � mÞC1 ð20aÞ

gðqÞ ¼ ðaA2 þ q2ÞðB2 þ aq2Þ � m2q2 ð20bÞ

ffiffiffi
a

p
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b � c2

p
; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
ð20cÞ

Here ðq21; q22; q23Þ are the roots of the cubic

k1

�
þ k2q2 þ

c
p

�
gðqÞ þ c

p
e1ðB2



þ aq2Þ þ e2q2ðaA2 þ q2Þ � 2m
ffiffiffiffiffiffiffiffi
e1e2

p
q2
�

ð21Þ

These roots need not be single-valued in p but, in order that (18) and (19) be bounded as g ! 1, must give

ReðpqiÞP 0 in the cut p-plane. The Qi follow by substituting (19) into the transform of (16a):

Qi ¼
h

~aac44

gðqiÞ
D

ðqj � qkÞ aHðqj; qkÞlr̂r
h

þ qjqkðqj þ qkÞGðq2j ; q2kÞr̂r
i

ð22aÞ

D ¼
X3
i¼1

NCq2i
�

þMCB2
�
qjqk q2j

�
� q2k

�
G q2j ; q

2
k

� �
ð22bÞ

r̂r ¼
Z

L
rðtÞe�pt dt ð22cÞ

In (22a,b) i 6¼ j 6¼ k and the three indices cycle through the values (1,2,3), e.g. ði ¼ 1; j ¼ 2; k ¼ 3Þ. The
dimensionless terms ðG;HÞ are given by

Gðx2; y2Þ ¼ KCðx2 þ y2Þ þ LCx2y2 þ KCT � LCA2B2 ð23aÞ

Hðx; yÞ ¼ MCA2B4 þ ½NCðx2y2 � A2B2Þ þMCðT þ x2 þ y2Þ�xy þMCB2ðx2 þ y2Þ2

þ ðMCB2T þ NCx2y2Þðx2 þ y2Þ þ ðNCT �MCB2Þx2y2 ð23bÞ

and the dimensionless parameters

T ¼ aA2 þ 1

a
ðB2 � m2Þ ð24aÞ

KC ¼ ðB2 � mÞC1 þ aA2C2; LC ¼ aC1 þ ð1� mÞC2 ð24bÞ

MC ¼ ðm� 1ÞC1 � aA2C2; NC ¼ �aC1 þ ðm� B2ÞC2 ð24cÞ

depend only on dimensionless thermoelastic constants and the dimensionless sliding speed c. With (18), (19)

and (22) available, the solution to the unmixed problem in transform space is essentially complete.

However, the roots q2i exhibit a type of p-dependence that leads, upon transform inversion, to multiple

integrals of r. While not complicated, their presence could require that the boundary condition on u2;n in

(10) be solved for r by semi-numerical techniques. Asymptotic forms of (18), (19) and (22) are, therefore,
sought that allow an analytical solution.
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5. Unmixed problem: asymptotic solution

Asymptotic forms of the bilateral Laplace transform valid for jpj � 1 give inversions that are valid for

jnj � 1. However, because h is usually (Brock and Georgiadis, 2000) of an order of magnitude less than 1
lm, the inversions are robust. Therefore (18) and (19) are expanded in view of (20), (22a,b) and (23) for

small jpj, and only the lowest-order terms kept. In particular, the roots of (21) give

q1 ¼ aôo; q2 ¼ bôo;
ffiffiffi
p

p
q3 ¼

ffiffiffiffi
ce

p
ôo; ôo ¼

ffiffiffiffiffiffiffi�p
p ffiffiffi

p
p ð25Þ

where the dimensionless quantities ða; b; c _eeÞ are defined by (5) and

a ¼ X þ x; b ¼ X � x; ce ¼
c
k2

ae

a
ð26aÞ

2
ffiffiffiffi
ae

p ðX;xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaeAe 	 BÞ2 � m2

e

q
;

ffiffiffiffi
ae

p
Ae ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
be � c2

p
; ab ¼ AeB ð26bÞ

ae ¼ a þ e2; be ¼ b þ e1; me ¼ mþ ffiffiffiffiffiffiffiffi
e1e2

p
; ce ¼ 1þ aebe � m2

e ð26cÞ
The transforms (18) become, for example,

c44
h

ûu1 ¼
Uae

�ag
ffiffiffiffi�p

p ffiffi
p

p

Bðb� aÞReD
ðKbbr̂r þ Nbôolr̂rÞ � Ube

�bg
ffiffiffiffi�p

p ffiffi
p

p

Bðb� aÞReD
ðKaar̂r þ Naôolr̂rÞ ð27aÞ

c44
h

ûu2 ¼
aVae

�ag
ffiffiffiffi�p

p ffiffi
p

p

Bðb� aÞReD
ðNblr̂r � Kbbôor̂rÞ �

bVbe
�bg

ffiffiffiffi�p
p ffiffi

p
p

Bðb� aÞReD
ðNalr̂r � Kaaôor̂rÞ ð27bÞ

c44~aaĥh ¼ aHaae�ag
ffiffiffiffi�p

p ffiffi
p

p

Bðb� aÞReD
ðKbbr̂r þ Nbôolr̂rÞ � aHbbe�bg

ffiffiffiffi�p
p ffiffi

p
p

Bðb� aÞReD
ðKaar̂r þ Naôolr̂rÞ ð27cÞ

Here (19) and (20) produce in light of (25) the dimensionless terms

ðUa;UbÞ ¼ B2C1 þ ðmC2 � aC1Þða2; b2Þ ð28aÞ

ðVa; VbÞ ¼ aA2C2 � mC1 � C1ða2; b2Þ ð28bÞ

ðKa;KbÞ ¼ KC � LCða2; b2Þ; ðNa;NbÞ ¼ NCða2; b2Þ �MCB2 ð28cÞ

Ha ¼ a4 � Ta2 þ A2B2; Hb ¼ b4 � Tb2 þ A2B2 ð28dÞ
and dimensionless parameters

Re ¼ c2Ae þ CRB; Te ¼ aeA2
e þ

1

ae
ðB2 � m2

e Þ ð29aÞ

DCR ¼ MCðKC � LCTeÞ þ LCNCA2
e ; c2D ¼ KCNC � LCMCB2 ð29bÞ

6. Sliding speed and material effects

If Reða; bÞP 0, then boundedness of (27) as g ! 1 is assured if the branch cuts ImðpÞ ¼ 0, ReðpÞ < 0

and ImðpÞ ¼ 0, ReðpÞ > 0 are introduced for
ffiffiffiffiffiffiffi
	p

p
respectively, and Reð

ffiffiffiffiffiffiffi
	p

p
ÞP 0 in the cut p-plane. Study
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of (20c) and (26a,b) shows that c ¼ 	ð1;
ffiffiffi
b

p
;
ffiffiffiffiffi
be

p
Þ are branch points of ðB; bÞ;A and ðAe; aÞ, respectively, in

the c-plane. We impose, therefore, the requirements that ReðB; b;A;Ae; aÞP 0 in the cut c-plane. In light of

(5a) and (7), the general property b > 1 (Payton, 1983) implies that ð
ffiffiffi
b

p
v0r ; v

0
r Þ are, respectively, the iso-

thermal dilatational and rotational wave speeds parallel to the x1-axis, while ð
ffiffiffiffiffi
be

p
v0r ; v

0
r Þ are (asymptoti-

cally) their thermoelastic counterparts. Therefore, limiting the present study to sub-critical sliding speeds

requires as a first step that 0 < c < 1, i.e. ðB;A;AeÞ in (27) are always positive real.

The terms ða; bÞ exhibit branch points in addition to the values c ¼ 	ð1;
ffiffiffiffiffi
be

p
Þ shared with ðB;AeÞ. By

generalizing the isothermal transversely isotropic results of Payton (1983), three categories for the di-

mensionless thermoelastic parameters ðae; be; ceÞ can be defined according to the locations of these addi-

tional branch points:

Category 1 : 2
ffiffiffiffiffiffiffiffi
aebe

p
6 ce 6 1þ aebe ð1 < be < aeÞ

ae þ be 6 ce 6 1þ aebe ð1 < ae < beÞ
2ae 6 ce 6 1þ a2

e ð1 < be ¼ aeÞ
ð30aÞ

Category 2 : 1þ be < ce < ae þ be; c2e � 4aebe < 0 ð30bÞ

Category 3 : ce < 1þ be; c2e � 4aebe < 0 ð30cÞ
The associated cuts are chosen so that the property Reða; bÞP 0 is maintained in the cut c-plane. In this

article, however, it is useful to seek the branch points of the combinations b	 a. For category 3, the terms

b	 a exhibit, respectively, the branch points

c ¼ 	c0; c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

ðae � 1Þ2
ffiffiffiffi
ae

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e � ðae � 1Þðbe � 1Þ
q

� me

� �2s
ð31aÞ

c ¼ 	ic00; c00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðae � 1Þ2
ffiffiffiffi
ae

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e � ðae � 1Þðbe � 1Þ
q

þ me

� �2
� 1

s
ð31bÞ

For category 1 and 2, the term b� a has, respectively, the branch points

c ¼ 	cc; cc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðae � 1Þ2
me 	 i

ffiffiffiffi
ae

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðae � 1Þðbe � 1Þ � m2

e

q� �2
� 1

s
ð32aÞ

c ¼ 	ic00 ð32bÞ
Eqs. (31) and (32) show that the categories coalesce to some extent in so far as the branch points of the
linear combinations of ða; bÞ are concerned. It should also be noted that, after BGH, the denominator term

b� a has been factored from the original solution forms. The potential singular behavior does not, as seen

in (31) and (32), arise for real sliding speeds. In fact, such behavior would not occur in any case: the ex-

ponential terms in (27) are identical when b ¼ a, and combinations of the now-common numerator terms

themselves exhibit factors b� a that cancel that in the denominator.

However, 0 < c0 < 1 in (31a). Thus, the quantities ða; b; aþ bÞ are given by (26a) and are positive real on

the positive ReðcÞ-axis for 0 < c < 1 for all subsonic sliding speeds ð0 < v < v0r Þ in the category 1 and 2

case, but only for c0 < c < 1 when subsonic speeds lie in the range c0v0r < v < v0r in the category 3 case. For
speeds in the subsonic range 0 < v < c0v0r the combination bþ a remains positive real for category 3 in the

interval 0 < c < c0 of the positive ReðcÞ-axis, but ða; bÞ are now the complex conjugates

a ¼ X � i �xx; b ¼ X 	 i �xx ð33Þ
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for ImðcÞ ¼ 0	; 0 < c < c0, where

2
ffiffiffiffi
ae

p
�xx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e � ðaeAe � BÞ2
q

ð34Þ

Eq. (27) is bounded in g for all subsonic speeds because X > ðx; �xxÞ > 0. Moreover, the real-valued nature

of c-dependence in (27) is maintained even when 0 < c < c0 because the pairs of terms in (27) become

complex conjugates in view of (33).
Another denominator term in (27), Re, is also obtained by factoring the original forms after BGH. It is a

more compact version of the thermoelastic Rayleigh function of the speed parameter c, where

Reð0Þ < 0; Reð	1Þ > 0; Reð	ce
RÞ ¼ 0 ð0 < ce

R < 1Þ ð35Þ
That is, ce

Rv
0
R is the effective thermoelastic Rayleigh speed parallel to the x1-axis. By following NAB, the

dimensionless Rayleigh speed parameter can be obtained analytically to within a single quadrature as

ce
R ¼ 1

GR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ffiffiffiffi

ae
p

R0ffiffiffiffiffi
be

p
ð1þ ffiffiffiffi

ae
p Þ

s
; lnGR ¼ � 1

p

Z ffiffiffi
be

p

1

tan�1 CR
ffiffiffiffi
ae

p

t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

be � t2

s
dt
t

ð36Þ

In (36) the definitions

R0 ¼
�1

K0C2 þ L0C1 � K0L0

ðK0

�
� L0beÞ K0

�
� L0

ae

�
þ K0L0

m2
e

ae

�
< 0 ð37aÞ

K0 ¼ ð1� mÞC1 þ bC2; L0 ¼ aC1 þ ð1� mÞC2 ð37bÞ
hold. Because (27) is singular at c ¼ 	ce

R we define sub-critical sliding indentation speed as being that for
which

0 < c < ce
R ð38Þ

7. Unmixed problem: full-field solution example

For (27) governed by either (26a) or (33), the entire ImðpÞ-axis serves as the Bromwich contour in (17).

Integration along this axis is accomplished with standard tables (Peirce and Foster, 1956). Eq. (27a) then

gives

c44
h

u1;n ¼
�1

2pRe
ðCLBþ AeÞ

Z
L

r
Xg

s2þ þ X2g2

 
þ Xg

s2� þ X2g2

!
dt

þ X
2p �xxRe

ðCLB� AeÞ
Z

L
r

sþ
s2þ þ X2g2

 
� s�

s2� þ X2g2

!
dt

þ lB
2p �xxRe

CN

�
� Te

2

�Z
L

r
Xg

s2þ þ X2g2

 
� Xg

s2� þ X2g2

!
dt

� lBX
pRe

Z
L

r
sþ

s2þ þ X2g2

 
þ s�

s2� þ X2g2

!
dt ð39Þ

for category 3 when 0 < c < c0, where rðtÞ is understood and

s	 ¼ s 	 �xxg; s ¼ n � t ð40aÞ
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DCL ¼ C1ðTeLC � KCÞ þ LCA2
e ðaC1 � mC2Þ ð40bÞ

DCN ¼ C1ðTeNC �MCB2Þ þ NCA2
e ðmC2 � aC1Þ ð40cÞ

For category 1 and 2 for all 0 < c < 1 and category 3 when c0 < c < 1, however,

c44
h

u1;n ¼
�1

2pRe
ðCLBþ AeÞ

Z
L

r
bg

s2 þ b2g2

�
þ ag

s2 þ a2g2

�
dt þ X

2pxRe
ðCLB� AeÞ

�
Z

L
r

bg
s2 þ b2g2

�
� ag

s2 þ a2g2

�
dt þ lB

2pxRe
CN

�
� Te

2

�Z
L

r
s

s2 þ b2g2

�
� s

s2 þ a2g2

�
dt

� lBX
pRe

Z
L

r
s

s2 þ b2g2

�
þ s

s2 þ a2g2

�
dt ð41Þ

Similar results hold for ðu2;n; hÞ. Eqs. (39) and (41) coincide in the limit as c ! c0 and as g ! 0.

8. Sliding indentation problem solution

The simpler problem results provide a candidate for the sliding indentation problem solution if the
condition on u2;n in (10) is satisfied. Substitution of the counterpart to (39) and (41) into this condition and

invoking the standard (Carrier and Pearson, 1988) result

x
x2 þ y2

! pdðyÞ ðx ! 0þÞ ð42Þ

where d is the Dirac function, leads to the equation

2XAe
1

p
ðP Þ

Z
L

rdt
t � n

þ ðAe þ CMBÞlr ¼ c44Re

h
dV
dn

ðn 2 LÞ ð43Þ

for r. Here ðP Þ signifies Cauchy principal value integration, and the dimensionless quantity CM is given by

DCM ¼ C2ðNCA2
e �MCÞ þMCðaA2C2 � mC1Þ ð44Þ

Eq. (43) is a standard (Muskhelishvili, 1975; Erdogan, 1976) singular integral equation; in the manner of

BGB it yields the solution

r
c44

¼ Re

hAeDX
I

dV
dn

; n

� �
; DX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4X2 þ l2 1þ CM

B
Ae

� �2
s

ð45Þ

where the functional

IðX ; xÞ ¼ X ðxÞ cos pt þ lþ � x
x� l�

� �t
sin pt

p
ðP Þ

Z
L

X ðtÞ
t � x

t � l�
lþ � t

� �t

dt ðx 2 LÞ ð46aÞ

t ¼ 1

p
tan�1 l

2X
1

�
þ CM

B
Ae

�
� 1

2

�
� 1

2
< t < 0

�
ð46bÞ

Eq. (46b) gives the eigenvalue of (43). Its sign indicates in light of (16a) that the solution candidate (45)
automatically satisfies Signorini condition (b) at n ¼ l�.
Satisfaction at n ¼ lþ, however, requires thatZ

L

dV
dt

t � l�
lþ � t

� �t
dt

t � lþ
¼ 0 ð47Þ
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Substitution of (45) into (12) in view of (16a) and use of Cauchy theory (BGB) gives

Z
L

dV
dt

t � l�
lþ � t

� �t

dt ¼ �AeDX

c44Re
F ð48Þ

Eqs. (47) and (48) provide the auxiliary formulas necessary to determine ðl; l	Þ. To illustrate this and also

the determination of whether or not unilateral constraint (13) and (15) can be satisfied, we consider the

generic parabolic die

V ¼ V0 þ V1n þ 1
2
V2n

2 ð49Þ

Here ðV0; V1; V2Þ are real constants with dimensions of length. Substitution into (47) and (48) and use of

Cauchy theory (BGB) gives the formulas

V1 þ V2ðlþ þ tlÞ ¼ 0; l2 þ 4XAe

ptð1þ tÞRe

F
c44V2

¼ 0 ð50Þ

for ðl; lþ; l� ¼ lþ � lÞ. Use of (50) and Cauchy theory (BGB) in (45) then yields

r ¼ � 2 sin pt
ptð1þ tÞ

F
hl2

ðlþ � nÞ1þtðn � l�Þ�t
< 0 ðn 2 LÞ ð51Þ

It is noted that (51) is not only bounded, but vanishes continuously at n ¼ l	.
It is also seen, in view of (35) and (46b), that (50) implies V2 < 0 for 0 < c < ce

R but, if super-Rayleigh/

subsonic sliding speeds ðce
R < c < 1Þ are allowed, then (50) implies V2 > 0. Both cases satisfy in light of (51)

the unilateral constraint (13). To examine this situation, (45) and (49) are used to obtain for the half-space

surface outside the contact zone (g ¼ 0, n 62 L) the formulas

u2;n ¼ �V2½tlþ lþ � n � ðlþ � nÞ1þtðl� � nÞ�t� ð52aÞ

u2;nn ¼ �V2

lþ � n
l� � n

� �t

1

��
þ t þ t

lþ � n
l� � n

�
� 1

�
ð52bÞ

Eq. (52a) exhibits continuity at the contact zone edges ðn ¼ l	Þ, while (52b) shows that the half-space

curvature behaves at both edges as 	1 for V2 < 0 and V2 > 0, respectively. Schematics for the two cases of

possible surface deformation, that also satisfy (13), are given in Fig. 2. The case V2 > 0 is seen to be ar-

tificial, so that the restriction (38) does more than avoid singular behavior. This result is known for the
frictionless isotropic isothermal problem as well (Georgiadis and Barber, 1993).

The remaining unilateral constraint (15) gives (BGB) in view of (39), (41), (43), (45) and (49) the in-

equality

�V2S6 h ð53aÞ

Fig. 2. Schematics of surface deformation for parabolic die.
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S ¼ 1

DX
1

�
þ CL

B
Ae

� l2 B
Ae

1

�
þ CM

B
Ae

��
ðlþ � nÞ1þtðn � l�Þ�t þ l

B
Ae

ðlþ � n � tlÞ ð53bÞ

The dimensionless quantity S > 0 for some values of n 2 L, so that the local constraint (53a) is not au-
tomatically satisfied. Following Brock and Georgiadis (2000), a global constraint is sought: First, the roots

of dS=dn are examined in order to find maximum positive values of S. Use of the argument principle

(Hille, 1959) shows that only one such root, n ¼ n0, exists for n 2 L. The same approach (NAB) used for

(36) gives

n0 ¼
lþ þ l�x0
1þ x0

ðn0 2 LÞ ð54aÞ

x0 ¼
�1

G0

1

�
þ 1

t

�
> 0; lnG0 ¼ � 1

p

Z 1

0

/dt
t

ð54bÞ

/ ¼ tan�1
2lX B

Ae

l2 B
Ae

1þ CM
B
Ae

� �
� 1� CL

B
Ae

h i
tt þ tttðl� tÞ½ � � l2 B

Ae
1þ CM

B
Ae

� � ð54cÞ

Substitution of (54) into (53a,b) in light of (50) leads to the global constraint

� 4lXB
pð1þ tÞRe

F
c44h

1

n0 � l� � tl
6 1 ð55Þ

The upper bound imposed on the compressive load F is more severe as the sliding speed nears its allowable

maximum ðc ! ce
RÞ.

9. Surface thermal effects

The counterparts to (39) and (41) for the temperature change h reduce for the contact zone ðg ¼ 0; n 2 LÞ
to

c44~aah ¼ a
Re

ðCaAe þ CbBÞr � 2l
aXCBB

pRe
ðP Þ

Z
L

rdt
t � n

ð56Þ

Here the dimensionless quantities

DCa ¼ KCðT � TeÞ þ LCB2ðA2
e � A2Þ ð57aÞ

DCb ¼ KCðA2 � A2
e Þ þ LCðTA2

e � TeA2Þ ð57bÞ

DCB ¼ MCðTe � T Þ þ NCðA2 � A2
e Þ ð57cÞ

vanish appropriately in view of (20), (24), (26) and (29) for the isothermal limit.

Substitution of (45) and (49) into (56) and use of Cauchy theory (BGB) gives

h~aah ¼ � aV2

DX
Ca

�
þ Cb

B
Ae

þ l2CB 1

�
þ CM

B
Ae

��
ðlþ � nÞ1þtðn � l�Þ�t þ aV2lCB

B
Ae

ðlþ � nþ þ tlÞ ð58Þ

For ðg ¼ 0; n 62 LÞ the lead term in (56) vanishes, and integration is no longer singular:

h~aah ¼ aV2lCB
B
Ae

½lþ � n þ tl� ðlþ � nÞ1þtðl� � nÞ�t� ð59Þ
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is the result (BGB). Eqs. (58) and (59) show that the surface temperature change is continuous at the

contact zone edges, i.e. they both give

hðlþÞ ¼ l
aV2

h~aa
CB

B
Ae

tl > 0; hðl�Þ ¼ 1

�
þ 1

t

�
hðlþÞ < 0 ð60Þ

Eq. (60) shows that the temperature change on the half-space surface vanishes (asymptotically) outside the
contact zone in the absence of friction ðl ¼ 0Þ. Because ðV2; tÞ < 0, it also shows that frictional heating

occurs at the contact zone leading edge ðn ¼ lþÞ; the temperature actually drops at the trailing edge

ðn ¼ l�Þ.

10. Sample calculations: zinc

Zinc is a category 3 hexagonal material in its isothermal state, i.e. satisfies (30c) when ðe1; e2Þ ¼ 0 (Payton,
1983). A thermoelastic study of zinc (Sharma and Sharma, 2002) yields the data

c11 ¼ 162:8 GPa; c22 ¼ 62:7 GPa; c12 ¼ 50:8 GPa; c13 ¼ 36:2 GPa; c44 ¼ 38:5 GPa

q ¼ 7140 kg=m3

T0 ¼ 296 �K; cv ¼ 390J=kg �C

K1 ¼ K2 ¼ 124 W=m �C; a1 ¼ 5:818ð106Þ1=�C; a2 ¼ 15:35ð106Þ1=�C

These values satisfy (4a,b) and, in view of (5), (6) and (26c), give the key dimensionless parameters

a ¼ 1:6285; b ¼ 4:2301; m ¼ 2:3195; m3 ¼ 1:9403; c ¼ 2:506

ae ¼ 1:7203; be ¼ 4:3042; me ¼ 2:4019; ce ¼ 2:6354

C1 ¼ 4:6018; C2 ¼ 5:1181

and (effective) thermoelastic characteristic length

h ¼ 0:019178lm

It is seen that the thermoelastic terms ðae; be;me; ceÞ are, in keeping with the theory of linear coupled

thermoelasticity (Boley and Wiener, 1985), perturbations of their isothermal counterparts ða; b;m; cÞ. The
thermoelastic terms do satisfy Eq. (30c), and their use in (31a) and (36) gives the dimensionless speed

parameters

c0 ¼ 0:9999; ce
R ¼ 0:8833

Because ce
R < c0 the restriction to sub-critical sliding means that the case for 0 < c < c0 applies, e.g. (33) and

(39) hold.

Some effects of friction on thermoelastic sliding indentation can be seen in the contact zone size L ¼ hl.
As an example, consider the simple parabolic profile arising from (49) when V1 ¼ 0. Then (50) produces the

formula

L
L� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AeX

ptð1þ tÞRe

s
; L� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F

c44V2

����
����

s
h ð61Þ
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Plots for zinc of the dimensionless ratio L=L� vs. sub-critical ð0 < c < ce
R ¼ 0:8833Þ c are given in Fig. 3 at

various values of the friction coefficient l. These show that contact zone size increases with both friction

and sliding speed. The variation with speed is more pronounced.
Another quantity of interest is the contact zone average temperature change

~hh ¼ 1

l

Z
L

hdn ð62Þ

Substitution of (58) into (62) and use of Cauchy theory (BGB) gives for the same ðV1 ¼ 0Þ parabolic die the
formula

~hh
~hh� ¼ � aL�

LRe
CaAe

�
þ CbB� 2l

CBBXð1þ 2tÞ
ptð1þ tÞ þ l2CBB 1

�
þ CM

B
Ae

��
ð63aÞ

~hh� ¼ F
c44h~aa

ð63bÞ

Fig. 3. Dimensionless contact zone size vs. dimensionless sliding speed.

Fig. 4. Dimensionless average contact zone temperature change vs. dimensionless sliding speed.
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Plots for zinc of the dimensionless ratio (63a) vs. sub-critical c at various values of l in Fig. 4 show that the

average temperature change is always positive. The variation with both speed and friction is not as pro-

nounced, however, as that displayed in Fig. 3. The more-sensitive speed variation is, moreover, an inverse

one.

11. Comments

Robust asymptotic solutions have been obtained analytically for sliding indentation in the dynamic

steady-state on a transversely isotropic thermoelastic half-space by a rigid die in the presence of friction.

The analysis was two-dimensional, the die was insulated and its profile, smooth. Sliding could occur at any

constant sub-critical value, and all auxiliary conditions––including two unilateral constraints––that are

required for physically acceptable solutions were imposed.

The solution was examined for the case of a generic parabolic die, and equations for the contact zone size

and location derived. The solution also indicated that sub-critical sliding arises for sliding speeds below the
thermoelastic Rayleigh wave value. Singular behavior occurs at the Rayleigh speed, and speeds in the super-

Rayleigh/subsonic range lead to an artificial result in order that the first unilateral constraint––that contact

zone normal stress is non-tensile––be satisfied. This speed-related behavior is consistent with isotropic/iso-

thermal sliding indentation studies (Georgiadis and Barber, 1993; Brock and Georgiadis, 2000; Brock, 2002).

The second unilateral constraint arises under a strict interpretation of the local application of the

Coulomb model: the contact zone shear stress work-rate must be negative. It was found that the local

constraint is not automatically satisfied, but that a global constraint for the total compressive force on the

die can be extracted. Violation of this constraint implied that a displacement gradient magnitude ap-
proaches unity, which in turn would violate the linearity of the analysis. However, the global inequality

shows that this scenario arises generally for sliding speeds near the critical subsonic (Rayleigh) value. At

that speed, the solution becomes unbounded in any case.

It was found that the temperature change (asymptotically) vanishes on the half-space surface outside the

contact zone in the absence of friction. With friction, the temperature at the trailing edge of the zone might

actually drop. Calculations showed, however, that the average contact zone temperature always increases.

This average varies directly with friction and inversely with sliding speed. Both variations were small when

compared to the direct variations seen with both parameters in calculations for the contact zone size.
In general (Payton, 1983; Norris and Achenbach, 1984) solution forms for dynamic anisotropic elasticity

are more complicated than their isotropic counterparts. Following BGH, however, certain factoring pro-

cedures were used in this article to simplify these forms. As noted in the former article, similar factoriza-

tions could in fact be used to advantage in the isothermal case. This study also required the extraction of

certain roots of irrational functions, and the work of NAB provided an approach that produced expres-

sions analytical to within a single quadrature.

The solution forms obtained here were, in the full field, sensitive to categories of dimensionless iso-

thermal elastic constants. The categorization followed the three-element system used for isothermal
transverse isotropy by Payton (1983). It was found here that (a) the three categories coalesced into two in so

far as distinguishing solution form is concerned and (b) even these two categories lost their distinctiveness

on the half-space surface itself. It should be noted that the isothermal and thermoelastic categories might

not coincide for a given material. Although thermoelastic coupling may only perturb the isothermal ma-

terial constants, e.g. zinc, a material that exists near the edge of one category isothermally may move into

the adjacent category thermoelastically.

It should also be noted that the present analysis ignored the possibility of contact zone adhesion, i.e.

when tangential speeds of surface points equal the sliding speed. The present results are now being applied
to dynamic fracture studies that include this possibility, and to purely transient analyses of contact. It is
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hoped, however, that the present results stand on their own in shedding some light on the rapid sliding

indentation of anisotropic thermoelastic solids.
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